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1.0 INTRODUCTION 

The Oil and Gas industry, as with other industries which involve the processing and 
transport of aggressive chemicals at high or relatively high pressure, remains under 
the constant threat of uncontrollable release.  The consequences of such releases 
are significant and can lead to a Major Accident Hazard event causing injury and 
death to personnel, as well as significant damage or destruction of equipment, 
assets and neighbouring properties. 

The United Kingdom Continental Shelf is highly regulated and mandates that plant 
assets may only be operated following the submission and subsequent acceptance 
by the UK Health and Safety Executive of either a Safety Case (offshore facilities) 
or COMAH Safety Report (onshore facilities).  In addition, operators are required, in 
law to ensure that all equipment remains in a safe and fit-for-purpose condition, 
thus ensuring that hazards to personnel are minimised.   

Central to the submission of either a Safety Case or COMAH Safety Report is a 
Quantitative Risk Assessment; the intent of which being to identify where the 
primary safety risks are and to develop effective methods to mitigate or remove as 
appropriate.  Removal of risks is a specific requirement if those risks are deemed to 
be ‘unacceptable’; risks may be managed and/or mitigated if considered ‘As Low As 
Reasonably Practicable’ (ALARP), or no further management or mitigation methods 
are required if the risks are considered to be broadly acceptable (‘Low’).  QRA’s 
are therefore ubiquitous throughout the Oil and Gas Industry, and are clearly 
appropriate in the context of the development of effective risk management and/or 
mitigation measures, nevertheless there are, in the authors opinion, considered to 
be significant weaknesses both in the QRA and in the Safety Management Measures 
which are so-based in either the Safety Case or COMAH Safety Report; these are: 

1. QRA’s tend to be performed by specialist third-party consultancy 
organisations who have the resources, expertise and experience necessary in 
the performance of such assessments, however as a consequence QRA’s are 
often difficult, or more commonly than not, impossible to interrogate in 
many practical applications thus largely invalidating the compilation 
thereof1; 

2. The QRA makes use of standard and/or generic equipment failure 
probabilities that are unlikely to bear any resemblance to actual failure 
probabilities at a given installation (e.g. the generic failure probability of 
pipework in hydrocarbon service is typically stated as 10-5 per annum 
(reference)); any real resemblance would likely be purely coincidental. 

3. The Safety Case or COMAH Safety Report typically state a risk of 10-3 per 
annum and above to be unacceptable, a risk of 10-6 and below to be broadly 
acceptable (requiring no other risk mitigation or management measures) and 
the region in-between to be the ALARP region.  In practice however, no such 
means or measures, nor indeed efforts are made to demonstrate that actual 
equipment risks are within the stated and/or required regions of 
acceptance. 

                                                             
 
 
 
1 The precise details are not provided in the Safety Case; only summary results are presented.  It is not usually 
possible to determine the methodology used to calculate the (quantitative) risks, nor are the analytical tools used 
presented in any great detail either. 
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1.1 QRA Paradigm 

Quantified Risk Assessment (QRA) is a means of identifying potential hazards to an 
asset, its plant, process equipment and personnel and assessing the likelihood of 
occurrence and the subsequent consequences. 

In the UK offshore oil and gas industry, an operator is required to submit to the 
regulatory body (the Health and Safety Executive) a Safety Case for each of its 
installations in UK waters (COAMH report for onshore installations).  Traditionally, a 
QRA is 'left on the shelf' until re-submission of the Safety Case is required.  In 
general, the results are not widely understood or communicated; it is also the case 
that where the quantitative data are presented, the analyst is unable to further 
interrogate for use in practical applications as the narrative rarely, if ever, includes 
sufficient detail as to how the information was so derived.  The data is collected 
and compiled simply to satisfy the Regulator, and is rarely if ever used for any 
other purpose; this is wasteful and largely invalidates the process. 

The wider importance of QRA data to the effective through-life management of a 
large-scale asset cannot be underestimated.  The optimal approach is to adopt an 
integrated methodology, where the QRA is prepared at the concept design stage, 
and subsequently refining repeatedly as more data becomes available.  The 'Risk 
Profile' then more accurately represents the current state of the asset, so ensuring 
that, throughout the life of the asset, decisions are made on the basis of the best 
available information. 

Quantified Risk Assessment (QRA) is therefore a central component of the Safety 
Case, as is a demonstration of the adequacy of a company's Safety Management 
System (SMS), established to ensure that the design and operation of the 
installation and its equipment are safe.  The SMS sets out safety objectives, the 
system by which these objectives are to be achieved, performance standards to be 
met and the means by which adherence to these standards is to be monitored. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Quantitative Risks – Definitions of Tolerable Risks, Intolerable Risks and ALARP 

The above inverted triangle illustrating the regions of acceptability, ALARP and 
unacceptability are particularly informative; they provide clear boundaries within 
which the Safety Management System for a given installation must operate.  It is 
clear however, that operations within certain of the above regions, and in 
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particular the region designated as ‘unacceptable’ is rarely, if ever, demonstrated.  
Anomalies for example are commonly assessed either in a qualitative or semi-
quantitative fashion and whereas these approaches are acceptable, the primary 
issue is that whereas the Safety Case specifically states that a risk of 1 x 10-3 per 
annum is unacceptable, there is rarely, if ever, any analyses performed to 
demonstrate that a given anomaly complies with this specific requirement.  In 
extreme cases, this may result in equipment anomalies inadvertently over-step this 
pre-defined boundary. 

These guidelines therefore, were written to assist analysts with the rather detailed 
and complex process of probabilistic assessment and in the use of Reliability 
methods for calculating quantitative failure probabilities.  The analyses contained 
herein contain many specific examples to illustrate how the analytical methods 
work in practice rather than a detailed consideration of the theory which forms the 
foundations thereto; the literature often skips over the practicalities of employing 
certain analytical methods, where this document aims to present such in a detailed 
and methodical way.  This document deliberately excludes the quantitative 
analyses of the consequences of a given event; this information is usually 
summarized in the accompanying Safety Case (or COMAH report) and due reference 
should be made thereto when calculating risk.   
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2.0 STATISTICAL ANALYSIS 

Physical properties of materials, process operating conditions and the like will 
always vary; scatter in the observable data (i.e. from physical testing and/or 
parameter measurements) is always prevalent, however the extent will vary 
depending on the parameter being measured.  For example, corrosion test results 
often show a higher degree of scatter than many other measured parameters, 
largely because the observations made depend on a very wide variety of influencing 
factors.  Statistical analyses are extremely helpful in this respect as such facilitates 
the interpretation of meaningful results, especially where the data differs 
significantly.  Difficulties are often experienced when a variety of parameters are 
being investigated in order to determine the net effect of each; however statistical 
analysis methods provides a rational approach to such problems. 

Modern technology (i.e. computer systems and software systems) readily facilitates 
sophisticated statistical analyses on large datasets with relative ease.  This 
capability alone permits the speedy investigation of innumerable statistical 
parameters and to determine whether associations exist between a large number of 
variables and if so, to develop quantitative analytical expressions describing the 
relationship(s).  Statistical analyses find wide application and are used extensively 
across any and all industries; for example, investment Fund Managers use statistical 
analyses to assess the various market sectors to determine whether the share prices 
of companies within differing sectors rise cooperatively, fall cooperatively or rise 
and fall cooperatively; indeed statistical assessments are used to determine the 
behaviour of entire market sectors relative to the market as a whole, or relative to 
other entire sectors; investment strategies are often developed using such analyses. 

Statistical analysis methods are not difficult to comprehend or to assimilate, nor is 
their any difficulty with the application of such so that meaningful information may 
be obtained.  Innumerable tools are available to the analyst, from programmable 
calculators, computer spreadsheets and programmable software systems to name 
but a few; the preferred system however, is MathCAD, largely because of its great 
versatility and capability when compared to other systems that are available 
commercially.  The reader is free to make use of any system or tool that’s 
available, however certain of the analyses included herein makes use of many of 
the in-built features which are only available in MathCAD (in particular the solve 
blocks ‘find’, ‘minimize’) and so the emphasis herein is reflected accordingly.  
Although not critical to the statistical analyses per se, the methodology employed 
for calculating the relevant statistical parameters is nevertheless highly dependent 
on the use of these in-built MathCAD features and therefore in the absence of 
MathCAD the reader would be required to resort to the traditional (graphical) 
methods for the determination thereof. 
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3.0 STATISTICAL AND PROBABILISTIC ASSESSMENTS 

Most observable phenomena contain a degree of uncertainty; that is, such 
phenomena can never be predicted with absolute certainty.  It is generally the case 
that repeated measurements of many physical phenomena generate multiple 
outcomes, however among such outcomes it is often the case that certain outcomes 
occur more frequently than others.  This behaviour is described in the context of 
random variables; randomness being defined as the possibility of observing more 
than one possible outcome and therefore the outcome itself is to some degree 
subject to chance. 

The fundamental mathematical formulation of probability theory identifies all 
possible outcomes for a specific problem and defines the events in the context of 
these possibilities. 

3.1 Axioms of Probability 

There are three axioms of probability which govern the mathematical treatments 
which are discussed in the subsequent sections of this document; these are: 

Axiom Description and Meaning 

0)( ≥EP  This axiom states that the probability (P) of an event 
(E) will always be non-negative. 

0.1)(0or  ;1)( ≤≤=Ω EPP  This axiom states that the probability of the entire 
sample space (Ω) is unity; or more simply that the 
probability (P) of an event (E) will lie between zero (0) 
and unity (1). 

)()()( 2121 EPEPEEP +=∪  This axiom states that the probability (P) of the union 
of two mutually exclusive events (E1 and E2) is 
equivalent to the summation of their individual 
probabilities (for clarity, the mathematical term 
‘union’ is equivalent to the logical ‘OR’ statement).  

 

3.2 Quantifying Randomness 

The above axioms are central to all mathematical treatise concerning probabilities.  
These axioms can be used in a variety of ways to determine the likelihood (or 
probability) that a given event will occur.  In reality, event probabilities are rarely 
known and therefore need to be estimated; however before the event probability 
can be estimated the uncertainty associated thereto must be understood and 
quantified.  The mathematical representation of a random variable is therefore a 
primary task in probabilistic formulation; this subject is discussed in more detail in 
this section. 

Materials properties are known to be random variables, where values collected 
from testing and/or detailed analyses, and thus collectively constitute the sample 
space that describes the random variable, may then be used to extract quantitative 
information about the variable itself.  In order to demonstrate this, consider the 
following example that illustrates the variability of the Young’s Modulus of 
structural steel beams; the analyses described herein are based on forty one 
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specific observations from samples taken from specimen structural steel beam 
sections.  The data are presented below in Table 1. 

Test 
No 

Young’s 
Modulus 

(GPa) 

Test 
No 

Young’s 
Modulus 

(GPa) 
1 199.3 22 178.6 

2 201.3 23 220.6 

3 188.9 24 230.3 

4 197.9 25 211.0 

5 195.8 26 225.5 

6 206.2 27 215.8 

7 208.2 28 210.3 

8 203.4 29 215.8 

9 204.1 30 200.0 

10 195.8 31 202.7 

11 195.1 32 195.1 

12 202.0 33 210.3 

13 202.0 34 214.4 

14 193.7 35 202.0 

15 208.2 36 188.9 

16 208.2 37 202.0 

17 208.9 38 202.0 

18 215.1 39 215.8 

19 198.6 40 189.6 

20 190.3 41 202.7 

21 204.1 

Table 1: Young’s Modulus for Structural Steel Beams 

 

In basis of design document the Young’s Modulus (‘E’) for the above-mentioned 
structural steel beams was stated as 200 GPa, however the Table above clearly 
shows that this value rarely occurs; therefore it is clear in this case that the value E 
is a random variable and that this randomness needs to be modelled appropriately. 

In the above Table, the minimum (measured) value for E is 178 GPa and the 
maximum 230 GPa; if either value is used in the basis of design then clearly the 
behaviour of a structure would not be accurately predictable since the actual value 
of E will in all likelihood be something different.  The stiffness of a structure would 
either be underestimated or overestimated; furthermore, these values may not be 
the absolute minimum or maximum values.  If more sample analysis had been 
undertaken the maximum and minimum values may likely change, therefore 
working on the basis of maximum or minimum values may not be desirable and 
usually is not accepted as good design practice.  In order to overcome this 
deficiency, one common-sense approach is to determine the mean or expected 
value of E; on the basis of the above data this is 203 GPa, however it is clear that 
this value alone does not provide complete information.  Information regarding the 
dispersion of the values with respect to the mean is needed; this is expressed in 
terms of the variance, standard deviation or coefficient of variation of the variable.  
In addition, it is also particularly useful to know whether the dispersion is 
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symmetrical or asymmetrical – this degree of symmetry is describable using the 
skew parameter. 

All of the aforementioned parameters (mean, standard deviation etc.) are 
expressible mathematically.  Consider a random variable X and that n observations 
of X are available.  The mean, or expected value, of the random variable X, which 
is a measure of the central tendency of the data (often referred to as the first 
central moment), can be calculated as follows: 

µ x
1

n
1

n

i

x i∑
=

⋅

 

(1) 

It is noted however, that in equation (1) no distinction is made between the 
population and the sample mean; ordinarily it is implicitly assumed that the sample 
size is relatively large (the implications of small sample sizes are obvious). 

The variance of X, which is a measure of the spread in the data about the mean 
(also known as the second central moment), can be calculated as follows: 

Var X( )
1

n 1−
1

n

i

x i µ x−( )2∑
=

⋅

 

(2) 

If the random variable X is expressed in GPa (Giga-Pascals), then the unit of 
variance will be in GPa2.  This dimensional problem can be avoided by taking the 
square root of the variance.  This is the standard deviation and is calculated as: 

σ x Var X( ) 
(3) 

Although the standard deviation is expressed in the same units as the mean value, 
its absolute value does not clearly indicate the degree of dispersion in the random 
variable, without referring to the mean value.  Since the mean and standard 
deviation are expressed in the same units, a non-dimensional term can be 
introduced by taking the ratio of the standard deviation and the mean; this 
parameter is the coefficient of variation (COV) and is calculated as: 

δ x

σ x

µ x 
(4) 

For a deterministic variable the coefficient of variance is zero; the smaller the 
value of COV indicates a smaller degree of uncertainty of the primary variable.  In 
many engineering applications a COV of 0.1 to 0.3 is common for a random variable. 

The skewness (also known as the third central moment) is calculated as follows: 

Skewness
1

n
1

n

i

x i µ x−( )3∑
=

⋅

 

(5) 
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Since skewness is a third moment it can be positive or negative; again to avoid 
dimensional problems a non-dimensional measure of skewness, known as the 
skewness coefficient can be introduced as follows: 

θ x
Skewness

σ x
3

 

(6) 

If θx is zero, the randomness of the primary variable is symmetric; if θx is positive 
then the dispersion is more above the mean value than below it and the converse is 
true if θx is negative. 

In the context of the Young’s Modulus data as shown in Table 1 above, and with 
reference to the above equations, the following quantitative information was 
obtained: 

Random Parameter Young’s Modulus 

Mean 203.9 GPa 

Variance 108 GPa2 

Standard Deviation 10.3 GPa 

Coefficient of Variance 0.05 

Skewness 232.5 GPa3 

Skewness Coefficient +0.218 

Table 2: Statistical Parameters Associated with a Random Variable 

The above relatively simple analysis has indicated the following: 

1. The uncertainty in the Young’s Modulus for the structural steel beams is 
relatively small; 

2. The randomness is asymmetrical (i.e. the dispersion is skewed about the 
mean); 

3. The dispersion is skewed more above the mean value than below the mean. 

Simple analysis of the data therefore has provided valuable information regarding 
the random variable, however the above is only considered a preliminary 
description of the randomness of the variable.  A more complete description can be 
obtained by determining the analytical model which best describes the variable; 
there are a number of analytical models available which describe the randomness in 
the variable, these models are termed ‘probability distributions’.  For each 
probability distribution available (and there are numerous distributions available 
for use), there are two specific types of probability function: 

1. Probability Density Function (PDF) – which is essentially a frequency curve; 
it does not directly provide information on probability but only indicates the 
nature of the randomness; 

2. Cumulative Distribution Function (CDF) – this is the area beneath the PDF 
curve and as such directly provides the probability of a random variable 
having a value less than or equal to a specific, predefined value. 

The relationship between the PDF and CDF is shown conceptually in the two Figures 
illustrated below.  The Figures below have made use of the data as shown in Table 
1 for the Young’s Modulus of structural steel beams and these data have been 
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modelled using the Normal (or Gaussian) probability distribution, which was chosen 
in this instance because of its simplicity and wide-ranging application (it should be 
noted that further and more detailed analysis which is presented later in this 
section clearly indicates that the Gaussian distribution is not the best model to 
describe the randomness in E; moreover, a Gaussian distribution is symmetrical 
about the mean, but we already know from the preliminary analysis of the data 
that the randomness of E is actually skewed).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Probability Density Function (PDF) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Associated Cumulative Density Function (CDF) 
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The probability distributions as shown above suggest, by way of example, the 
following: 

1. Suppose the predefined minimum acceptable value of ‘E’ (which often may 
be stated in a basis of design document for example) is 185 GPa; the 
probability of values of ‘E’ being less than or equal to 185 GPa (shown 
graphically as Emin in both Figures 1 and 2) is quantified by the point at 
which the line describing Emin intersects the CDF curve, which in this 
instance is approximately 0.03, or 3%.  Conversely, this means that the 
probability that the values of ‘E’ being greater than or equal to the stated 
185 GPa minimum is 0.97, or 97%. 

2. For the stated value Emin, the frequency of observation of this value is 
approximately 0.007; a relatively infrequent observation. 

The above example helps to illustrate the relationship between the PDF and CDF for 
a given probability distribution.  It should be noted however, that since the CDF in 
particular provides information on probability for a given random variable, it must 
satisfy all of the three previously stated axioms of probability; in particular, there 
are several important observations which can be made on the basis of the graphical 
illustrations (i.e. Figures 1 and 2): 

1. The PDF must be a non-negative function; it can be zero, and theoretically 
its range is from -∞ to +∞. 

2. The CDF must be zero at -∞ and 1.0 at +∞; using standard terminology this 
means FX(-∞)=0 and FX(+∞)=1.0. 

3. The CDF is always greater than or equal to zero; that is FX(x)≥0, and is a 
non-decreasing function of a random variable. 

4. The CDF is continuous with the random variable.  In addition, for continuous 
random variables, the CDF has a mathematical derivative. 

Any mathematical function that satisfies all of the above criteria can be considered 
an acceptable CDF and can be used in risk and reliability analyses. 

3.3 Modelling of Random Variables 

There are a wide variety of probability distributions available for the modelling of 
random variables; the intention of this section however, is to illustrate how the 
modelling process is accomplished, rather than providing detailed descriptions of 
the models themselves – there are many texts available in the literature that may 
be referenced in this instance and it is recommended that the user review these in 
conjunction with this document.  The intent of this document is merely to provide 
simple guidance rather than detailed narrative. 

Procedures to calculate the probabilities of events can represent quite a significant 
challenge in its own right.  To define a distribution uniquely, the associated 
parameters of a given distribution (or model) need to be estimated; this is 
accomplished using the available data.  In practice, the choice of probability 
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distribution may be dictated by mathematical convenience, by familiarity with 
given distributions, or by standard engineering practices2.   

When sufficient data are available, numerous methods can be used to determine 
the underlying distribution which best ‘fits’ the random variable.  However, it is 
often the case that more than one probability distribution may fit the available 
data and therefore the task becomes more difficult in that, first of all an accurate 
fit must be found, and secondly where two or more ‘fits’ are found, the best fit 
must be determined.  Where ‘fits’ are concerned, often the naked eye suffices, 
however there are numerable examples where the ‘goodness of fit’ is such that the 
best fit is not discernible from the naked eye only, and so other analytical 
techniques are sought in such instances.  This section concerns the modelling of the 
available data for a random variable, and determining the ‘best fit’. 

As an example of how random data are modelled, the data for the Young’s Modulus 
(as presented in Table 1) will be used.  The under-lying distribution can be 
established in several ways: (a) drawing a frequency diagram, (b) plotting the data 
on probability paper and (c) conducting some statistical tests known as goodness-
of-fit tests for a given distribution.  The methods (a), (b) and (c) are considered to 
be the traditional approach; extremely laborious and very time-consuming.  They 
do not make use of the technology which is now available to the analyst, which 
allows an appropriate model or models to be determined very quickly, and 
determination of the ‘best fit’ model very quickly if necessary also. 

The approach advocated by the author is analytical and requires MathCAD; the 
treatments presented herein are written in MathCAD, and in particular make use of 
the analytical expressions which define the CDF and/or PDF of a given probability 
distribution.  The probability distributions used in this section are detailed in Table 
3 below; definitions of the terms used in the expressions defining each probability 
distribution are presented below: 

Parameter Definition 

x Random Variable 

f(x) Probability Density Function (PDF) describing the random variable ‘x’ 

F(x) Cumulative Distribution Function (CDF) describing the random variable ‘x’ 

µ Mean value 

σ Standard Deviation 

γ Euler-Mascheroni Constant (=0.57721) 

exp or ‘e’ Exponential function (where exp or e = 2.718) 

ln or log(e) Natural Logarithm (logarithm to the base ‘e’) 

α Location Factor 

β Scale Factor 

erf Error Function (a standard integral function) 

Γ Gamma function (a standard integral function) 

 
                                                             
 
 
 
2 For example, for pipeline risk and reliability assessments, it is acceptable engineering practice to assume, in the 
absence of actual test data, that the yield strength of the pipeline material is described by the log-normal 
probability distribution, with the mean value equal to 1.1 times the specified minimum value and COV equal to 
0.04. 
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Probability Distribution Type Description of Algorithm 

Normal or Gaussian PDF 

f x( )
1

σ 2 π⋅⋅
e

x µ−( )
2

2 σ2⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

−

⋅

 

CDF 
F x( )

1

2
1 erf

x µ−

σ 2⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅

 

Log-Normal PDF 

f x( )
1

2 π⋅ ξ⋅ x⋅
e

1

2
−

ln x( ) λ−

ξ

⎛
⎜
⎝

⎞
⎟
⎠

2

⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦⋅

 

CDF 
F x( )

1

2
1 erf

ln x( ) λ−

ξ 2⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅

 

Logistic PDF 
f x( )

1

4 β⋅
sech

2
⋅

x α−

2 β⋅

⎛
⎜
⎝

⎞
⎟
⎠  

CDF 
F x( )

1

2
1 tanh

x α−

2 β⋅

⎛
⎜
⎝

⎞
⎟
⎠

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅
 

Gumbel PDF 
f x( )

1

β
exp

x α−

β

⎛
⎜
⎝

⎞
⎟
⎠

⋅ exp exp
x α−

β

⎛
⎜
⎝

⎞
⎟
⎠

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅
 

CDF 
F x( ) 1 exp exp

x α−

β

⎛
⎜
⎝

⎞
⎟
⎠

−
⎛
⎜
⎝

⎞
⎟
⎠

−
 

Weibull PDF 

f x( )
x

β

⎛
⎜
⎝

⎞
⎟
⎠

α
α

x
e

x

β

⎛
⎜
⎝

⎞
⎟
⎠

α

−

⋅⋅
 

CDF 

F x( ) 1 e

x

β

⎛
⎜
⎝

⎞
⎟
⎠

α

−
⎡
⎢
⎣

⎤
⎥
⎦−  

Table 3: Commonly Used Probability Distributions 

 

The procedure for fitting random variables to the above five probability 
distributions is rather simple; whereas the analytical expressions may appear rather 
daunting, once the reader manages to assimilate the basic process involved the 
overall simplicity becomes more obvious. 

The requirement involves the input of a basic data set (i.e. in this instance, the 
data in Table 1 are used) and then calculating the mean and standard deviation for 
that particular data set.  The above five probability distributions may be modelled 
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using the calculated mean and standard deviation for the actual data and solving 
the simultaneous equations which describe the equivalent mean and standard 
deviation for a given probability distribution; to simplify this process the MathCAD 
solve block is used.  If MathCAD is not available to the user, then methods (a), (b) 
or (c) above would then be required.  The analytical expressions that define the 
equivalent mean and standard deviation for a given probability distribution are 
presented below for reference: 

Probability Distribution Parameter Analytical Expression 

Normal or Gaussian µ Not applicable 

σ Not applicable 

Log-Normal µ 
µ exp λ

ξ
2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠ 

σ 
σ exp ξ

2( ) 1−⎛
⎝

⎞
⎠ exp 2 λ⋅ ξ

2
+⎛

⎝
⎞
⎠⋅  

Logistic µ µ α 

σ 

σ
π
2

3
β
2

⋅
 

Gumbel µ µ α β γ⋅+   

σ 

σ
π
2

6
β
2

⋅
 

Weibull µ 
µ β Γ 1

1

α
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅

σ β
2

Γ 1
2

α
+

⎛
⎜
⎝

⎞
⎟
⎠

Γ 1
1

α
+

⎛
⎜
⎝

⎞
⎟
⎠

2

−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅

⎡⎢
⎢⎣

⎤⎥
⎥⎦

1

2

 

σ 

σ β
2

Γ 1
2

α
+

⎛
⎜
⎝

⎞
⎟
⎠

Γ 1
1

α
+

⎛
⎜
⎝

⎞
⎟
⎠

2

−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
 

Table 4: Analytical Expressions for Mean and Standard Deviations 

 

The procedure for mapping the actual statistical parameters (mean and standard 
deviation) to the above expressions in Table 4 and solving to determine the 
parameters of each probability distribution is very simple when making use of 
MathCAD.  The procedure is detailed below: 

3.3.1 Log-Normal Probability Distribution 

Mapping the statistical parameters and solving for the Log-Normal probability 
distribution model parameters is accomplished using the MathCAD solve block.  This 
is initiated in the MathCAD environment using the term ‘Given’; it should be noted 
also that within the solve block, the simultaneous equations are solved using the 
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Boolean assign rather than the formal MathCAD definition function.  It should also 
be noted that where values are unknown – as in the case of the solution to 
determine the probability distribution parameters – MathCAD requires the formal 
assignment of ‘guesses’ for those numerical values that it is solving for; the solve 
block will not work otherwise.  The guesses used can be any numerical value; they 
don’t require to be close to actual values at all, just that any numerical value 
(including zero) is assigned.  Solving for the Log-Normal probability distribution is 
detailed as follows: 

Description Syntax 

Initial ‘guesses’ for the 
MathCAD solve block 

λ 0.2:=  
ξ 0.2:=  

Start of solve block Given 
Simultaneous equations 

µ exp λ
ξ2

2
+

⎛⎜
⎜⎝

⎞⎟
⎟⎠ 

σ exp ξ2( ) 1−( ) exp 2 λ⋅ ξ2+( )⋅  
Solution for Log-Normal 
parameters 

λ

ξ

⎛
⎜
⎝

⎞
⎟
⎠

Find λ ξ,( ):=
 

Log-Normal Parameter 
Values 

λ 5.316=  

ξ 0.05=  

Table 5: Log-Normal Probability Distribution - Syntax for Calculating Model Parameters 

 

The above Table illustrates the precise syntax (MathCAD) to be used for calculation 
of the Log-Normal probability distribution parameters; the methodology as shown 
calculates the parameters for the distribution based on the calculated mean and 
standard deviation for the input data (this is achieved by solving the simultaneous 
equations which define the mean and standard deviation which are functions of the 
model parameters – accomplished using the ‘Given’ and ‘Find’ functions within 
MathCAD). 

The above Table illustrates the procedure for calculating the model parameters (in 
this case for the Log-Normal distribution); it must be borne in mind however, that 
the above procedure is not a demonstration that the data are describable in terms 
of the particular distribution.  This is accomplished in a separate exercise and will 
be discussed below. 

3.3.2 Logistic, Gumbel and Weibull Probability Distributions 

Mapping the statistical parameters for the Logistic, Gumbel and Weibull probability 
distributions is very similar to that shown above for the Log-Normal probability 
distribution; the primary difference being the nature of the simultaneous 
equations.  As before, this is accomplished using the MathCAD solve block. 
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Description Syntax 

Initial ‘guesses’ for the 
MathCAD solve block 

α 0.2:=  
β 0.2:=  

Start of solve block Given 
Simultaneous equations µ α 

σ
π2

3
β2⋅

 
Solution for Logistic 
parameters 

α

β

⎛
⎜
⎝

⎞
⎟
⎠

Find α β,( ):=
 

Logistic Parameter Values α 203.924=  

β 5.658=  

Table 6: Logistic Probability Distribution - Syntax for Calculating Model Parameters 

 

 

 

 

Description Syntax 

Initial ‘guesses’ for the 
MathCAD solve block 

α 0.2:=  
β 0.2:=  

Euler-Mascheroni Constant γ 0.57721:=  
Start of solve block Given 
Simultaneous equations µ α β γ⋅+  

σ
π2

6
β2⋅

 
Solution for Gumbel 
parameters 

α

β

⎛
⎜
⎝

⎞
⎟
⎠

Find α β,( ):=
 

Gumbel Parameter Values α 199.305=  

β 8.002=  

Table 7: Gumbel Probability Distribution - Syntax for Calculating Model Parameters 
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Description Syntax 

Initial ‘guesses’ for the 
MathCAD solve block 

α 0.2:=  

β 0.2:=  
Start of solve block Given 
Simultaneous equations 

µ β Γ 1
1

α
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅
 

σ β2 Γ 1
2

α
+

⎛
⎜
⎝

⎞
⎟
⎠

Γ 1
1

α
+

⎛
⎜
⎝

⎞
⎟
⎠

2

−

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
 

Solution for Weibull 
parameters 

α

β

⎛
⎜
⎝

⎞
⎟
⎠

Find α β,( ):=
 

Weibull Parameter Values α 24.783=  

β 208.455=  

Table 8: Weibull Probability Distribution - Syntax for Calculating Model Parameters 

 

3.4 Modelling Probability Distributions 

In the section above, the procedure for calculating the various probability 
distribution function model parameters (using MathCAD) was clearly illustrated; this 
however, is not the same as modelling the actual observations and proving that 
those data are explicable by a given probability distribution.  The procedure for 
accomplishing this is described in this section.  It should be noted however, that 
the procedure as described requires MathCAD to accomplish; if unavailable, or if 
comparable software systems such as MATLAB are not available then the traditional 
procedure of using probability paper and plotting the data to determine best fit 
would be required. 

The procedure requires the creation of an empirical probability distribution from 
the actual data and then modelling against a given probability distribution; the first 
step in the procedure involves ranking the data and computing the probability of 
occurrence from the ranked data, where the probability of occurrence is calculated 
as: 

F x( )
rank x( )

max rank x( )( ) 1+  
(7) 

The ranking of the input data is accomplished using a relatively simple MathCAD 
programme: 

r x( ) sorted sort x( )←

m match xi sorted,( ) 1+←

ranki mean m( )←

i 0 length x( ) 1−..∈for

rank

:=

 

(8) 
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The above ranking routine ranks the input data (in this case the vector x) from the 
smallest or largest or vice versa using the pre-defined function r(x) as shown above.  
This simple algorithm accounts for multiple flows of the same value by assigning 
each the average rank.  The data are then sorted and the cumulative probability 
and recurrence values calculated as follows (note: the variable in the calculations 
below is Ew, which in this instance refers to the Young’s Modulus data in Table 1 
above): 

Description Syntax 

Definition of the range for 
the sorting routine 

i 0 length E w( ) 1−..:=
 

Rank the input data (Ew) r wt r E w( ):=
 

Sorting of the ranks of the 
input data 

r swt sort r wt( ):=
 

Sorting of the basic input 
data (Ew) 

s wt sort E w( ):=
 

Calculate the cumulative 
probability 

probi

r swti

1 rows r swt( )+
:=

 
Calculate recurrence 

reci
1

probi
:=

 

Table 9: Syntax for Calculating Empirical Probability Distribution for Input Data 

The above routines were used specifically to develop an empirical probability 
distribution for the actual input data in Table 1; these data are then plotted with a 
given probability distribution using the model parameters calculated in section 3.3.  
The ‘goodness of fit’ should become immediately apparent.  This is accomplished 
by plotting the parameters rec versus swt (which is the empirical data set) and x 
versus F(x) (where the analytical expressions for each probability distribution 
defining F(x) are shown in Table 3 and for which describe the idealised analytical 
model). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Empirical and Analytical Modelling of E Data – Normal or Gaussian Distribution 
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Figure 5: Empirical and Analytical Modelling of E Data – Normal or Gaussian Distribution 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Empirical and Analytical Modelling of E Data – Log-Normal Distribution 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Empirical and Analytical Modelling of E Data – Log-Normal Distribution 
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Figure 8: Empirical and Analytical Modelling of E Data – Logistic Distribution 

 

 

 

 

 

 

 

 

 

 

Figure 9: Empirical and Analytical Modelling of E Data – Logistic Distribution 
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Figure 10: Empirical and Analytical Modelling of E Data – Weibull Distribution 

 

 

 

 

 

 

 

 

 

Figure 11: Empirical and Analytical Modelling of E Data – Weibull Distribution 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Empirical and Analytical Modelling of E Data – Gumbel Distribution 

 

 

 

 

 

 

 

 

 

Figure 13: Empirical and Analytical Modelling of E Data – Gumbel Distribution 
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3.5 Determining the ‘Best-Fit’ Probability Distribution 

The procedure thus far has involved the calculation of the basic statistical 
parameters from a given data set (in this case Young’s Modulus data), determining 
model parameters for a series of probability distributions based on the basic 
statistical data and then plotting empirical probability distributions and analytical 
distributions to determine a ‘visual’ goodness of fit. 

With reference to Figures 3-12 above, the following observations are worthy of 
note: 

1. There appears to be a very good fit of the Young’s Modulus data with the 
Normal (Gaussian), Log-Normal and Logistic probability distributions.  Visual 
goodness of fit is good and it is not possible to discern the ‘best fit’ visually; 
notwithstanding the issue regarding the best overall fit, it is reasonable to 
conclude that the Young’s Modulus for the structural steel beams is 
describable by all three. 

2. The Weibull distribution describes the Young’s Modulus reasonably well, 
however the overall fit is clearly better described by either the Normal, Log-
Normal or Logistic models. 

3. The Gumbel distribution is clearly unacceptable; the poor fit of the model 
with the actual data is clear and obvious. 

There is an analytical method available to the analyst which allows the 
determination of the best fit to the data; a procedure which is particularly valuable 
when the fits appear good visually, as they do with the Normal, Log-Normal and 
Logistic models for the Young’s Modulus data.  The procedure for accomplishing this 
is termed the Kolmogorov-Smirnov test; this procedure is discussed in the following 
narrative. 

3.5.1 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test is a simple test to determine the 'fit' of a given 
statistical distribution to a sample set of actual data.  The test involves the 
determination of the maximum difference in values between two cumulative 
distribution functions, as follows: 

D n max F x x i( ) S n x i( )−
 (9) 

Where Fx xi( ) is the theoretical CDF of the assumed distribution at the ith 

observation or ordered samples xi, and Sn xi( ) is the corresponding stepwise CDF of 

the observed ordered samples.  The CDF of Dn can be related to a significance level 

ε as follows: 

P D D n
ε

≤⎛
⎝

⎞
⎠ 1 ε−

 
(10) 

The values of Dn
ε at various significance levels are illustrated in the matrix below 

for reference.  According to the K-S test, if the maximum difference Dn is less than 

or equal to the tabulated value Dn
ε, the assumed distribution is acceptable at the 

significance level ε. 
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Samples

5

6

7

8

9

10

11

12

13

14

15

20

25

30

35

40

45

50

">50"

D n
0.1

0.51

0.47

0.438

0.411

0.388

0.368

0.352

0.338

0.325

0.314

0.304

0.264

0.24

0.22

0.21

0.19

0.18

0.17

1.22

n

D n
0.05

0.563

0.521

0.486

0.457

0.432

0.409

0.391

0.375

0.361

0.349

0.338

0.294

0.264

0.242

0.23

0.21

0.2

0.19

1.36

n

D n
0.01

0.669

0.618

0.577

0.543

0.514

0.486

0.468

0.45

0.433

0.418

0.404

0.352

0.32

0.29

0.27

0.25

0.24

0.23

1.63

n

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠ 

Table 10: Stated Maximum Dn
ε for a Given Significance Level ε  (n is no samples) 

The syntax for applying the above technique for the Normal (or Gaussian) 
probability distribution to the Young’s Modulus sample set is detailed as follows: 

Description Syntax 

Determine analytical CDF 
based on stated E values 

(Normal probability 
distribution) 

F E w µ, σ,( ) 1

2
1 erf

E w µ−

σ 2⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

+
⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅:=

 
Sort values F X sort F E w µ, σ,( )( ):=

 
Determine difference per 
equation 9 above 

D F X prob−:=
 

Calculate the maximum 
difference value (which 
may be max or min) 

Dn max Dmax Dmin,( ):=  

Dn 0.077=  

Determine the number of 
samples ‘n’ in sample set 

n rows prob( ):=  

n 41=  
Decide significance level ε ks 1%:=  
K-S Values for Dn

α DN "See Table 10"=  

D N 0.25:=
 

K-S Test (per equation 10) KS "Acceptable" Dn DN≤if

"Unacceptable" otherwise

:=  

KS "Acceptable"=  

Table 11: Syntax for the Kolmogorov-Smirnov (K-S) Test 
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The above analyses (Table 11) shows that the maximum acceptable difference, for 
1% significance and sample size of 41 readings, is stated as 0.25; for the Normal (or 
Gaussian) probability distribution, the above analysis shows that the maximum 
difference is 0.077 and therefore the data are acceptable in the context of the 
Kolmogorov-Smirnov test and therefore the data may be acceptably described by 
the Normal probability distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Kolmogorov-Smirnov Test (Normal Probability Distribution) 

There are two primary benefits of using the Kolmogorov-Smirnov Test: 

1. Demonstrates that a given probability distribution is acceptable for use, 
based on a pre-defined level of significance. 

2. Allows the analyst to determine the best overall fit when a number of 
probability distributions may be acceptable. 

In the context of the Young’s Modulus data, the Normal, Log-Normal, Logistic and 
Weibull distributions were all acceptable, based on a 1% significance level; the 
Gumbel distribution however, was unacceptable.  The following K-S test data are 
summarised for reference: 

Model D n max F x x i( ) S n x i( )−
 

Normal (or Gaussian) 0.077 

Log-Normal 0.067 

Logistic 0.076 

Weibull 0.137 

Table 12: K-S Test Data (Young's Modulus) 

The K-S Test data in Table 12 above illustrate that whereas all probability 
distributions are acceptable (i.e. the maximum difference is less than the stated 
value for a 1% significance value) the ‘best fit’ model is clearly shown to be the 
Log-Normal distribution; this is because the Log-Normal model predicted values 
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yield the smallest overall difference when compared with the actual distribution 
values. 

3.6 Summary 

This section has illustrated the procedure for modelling data sets with standard 
probability distributions using MathCAD.  The narrative further considers methods 
to determine ‘best fit’ models of data sets either visually and/or analytically and 
confirming the validity of a given model thereto, for a pre-defined level of 
significance level. 

The above analyses are very useful for understanding the behaviour of a given 
variable; in the context of Integrity Assessments, the above analyses are the 
precursors to the assessment of failure probabilities and the assessment of risk.  
These analyses are generally more complicated when considered probabilistically 
(quantitatively); such treatments and the general concepts are discussed in the 
next section of these guidelines. 
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4.0 FAILURE PROBABILITY 

This section discusses and details the various approaches available for calculating 
the failure probability of a given component; the intent is to present an overview of 
the procedures available, rather than to provide detailed narrative of the theory 
covering each.  The analytical approaches in this section make use of Reliability 
models, and whereas understanding the axioms of Reliability would clearly be of 
considerable benefit, it was considered inappropriate to include within this section; 
this document is meant to serve as a guide only, and moreover a guide to the detail 
of how each of the available Reliability models work in practice. 

The intent is to provide users with a modest appreciation of the method concept(s) 
although avoids lengthy discussion of the methodology which is presented 
elsewhere (and for which it is strongly recommended that readers make reference 
to in conjunction with this document).  The following sections detail the approach 
for the solution of the various reliability algorithms for uncorrelated random 
variables only; for correlated random variables, various corrections must be applied 
and these are not discussed here. 
References in the literature present many complex analytical expressions which in 
themselves are not useable as they are presented (there are innumerable complex 
integrals for example) and must be solved or modified so that the user can make 
use of the formulae when applying such to practical applications.  This section 
attempts to clarify and assist users in this respect. 

4.1 Reliability Methods 

The basic concept of classical reliability theory involves the evaluation of the 
probability of failure by considering specific performance criteria and the 
associated load and resistance parameters; it is the functional relationships that 
define load and resistance that is of primary interest, where mathematically this is 
generally defined by the following ‘limit state’ equation: 

SRxg −=)(  (11) 

where R is ‘Resistance’ (or strength) and S is ‘Load’.  The conditions for which 
failures will occur are those when the random parameter variables which define the 
loads exceed those which define variable resistances (i.e. when g(x)<0); the points 
at which failures are likely to commence therefore, are where the load and 
resistance variables are equal.  This is the limit state, which if over-stepped, would 
cause a failure to occur and is definable for all g(x) = 0; the points all along g(x) = 0 
defines the so-called ‘failure surface’.  The ‘failure surface’ delineates the 
boundary between the safe and unsafe regions in variable parameter space and 
represents a state beyond which an equipment item (such as a pipeline) can no 
longer fulfil the function for which it was originally designed. 

On the basis of equation (11), and the fact that failures will therefore occur when 
g(x)<0, the probability of failure (Pf) is calculated as: 

( )∫ ∫ <
=

0)( 2121 .....,....,........
xg nnXf dxdxdxxxxP φ  (12) 

Where φ X(x1,x2,…xn) is the joint probability density function for the basic random 
variables X1, X2, ..Xn and that the integration is performed over the entire failure 
region (g(x)<0).  Equation (12) is considered to be the fundamental equation of 
reliability analysis, but in practice is virtually impossible to obtain for two reasons: 
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firstly, the joint probability density distributions can not generally be obtained and 
secondly, the integration in equation (12) is extremely difficult. 

The approach of choice is to use analytical approximations of the integral as 
defined in equation (12) that are simpler to compute.  Reliability methods were 
chosen for this specific reason as they readily provide very good estimates of failure 
probability: there are several methods available, however these guidelines will 
focus on First Order Second Moment (FOSM), First-Order Reliability Method (FORM) 
and the Second Order Reliability Method (SORM). 

The ‘limit state’ equation g(x) can be either linear or non-linear functions of the 
basic variables; however the First Order second Moment (FOSM) and the First Order 
Reliability Method (FORM) assumes the failure surface to be a linear function.  In a 
lot of cases FORM in particular can dependably be used as an approximation of the 
integration defined in equation (12) for the calculation of failure probabilities.  In 
certain instances however, the curvature of the failure surface may result in 
significant under or over-estimations of failure probability and therefore the Second 
Order Reliability Method (SORM) may then be required to be used to determine a 
more accurate estimate.  These methods will be discussed in a more practical 
context as to how best they can be used, with specific examples of their 
application, rather than an overall discussion of the theory of Reliability which may 
adequately be found within the literature.  During the course of the narrative, 
where specific examples are presented, they are done so using standard MathCAD 
syntax, and may therefore be readily incorporated within a given MathCAD sheet for 
use. 

4.2 First Order Second Moment Reliability Method (Hasofer-Lind) 

The Hasofer-Lind method is applicable for normal (or Gaussian) distributed random 
variables.  It first defines the reduced variables as: 

X i_r

X i µ Xi−

σ Xi  

i 1 2, n..( ) 

(13) 

Where Xi_r is a random variable with zero mean and unit standard deviation.  The 

above expression is used to transform the original limit state g X( ) 0 to the 
reduced limit state g Xr( ) 0.  The coordinate system of Xi is referred to as the 

original coordinate system and Xi_r the 'transformed' or reduced coordinate system 

(in other words, Xi is 'normal' and Xr is 'standard normal'). 

The Hasofer-Lind method (as with other Reliability methods) require the 
computation of a 'safety index', which in this case shall be designated βHL; this 

index is defined as the minimum distance from the origin of the axes in the 
'reduced' coordinate (standard normal) system to the limit state surface (failure 
surface - definable as g X( ) R S−  for all g X( ) 0).   

The Hasofer-Lind method can be explained by considering the following limit state 
equation: 

g X( ) R S− 0 (14) 
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Where ‘R’ is termed the Resistance (or strength) of the component and ‘S’ is the 
load the component experiences; as both are random variables definable by 
probability distributions, then no single value exists where R=S, or where R-S=0.  
Instead there exists a range of variables which satisfy equation (14) above; this 
range of variables is the limit, or point beyond which failures are possible.  As this 
is a range (or series), the point along which R=S (or where R-S=0) is termed the so-
called ‘failure surface’.  The Hasofer-Lind method assumes that the probability 
distributions for both ‘R’ and ‘S’ are normally distributed, which as the example in 
section 3.0 above, is not always the case, therefore limiting the usefulness of this 
Reliability method.  The procedure involved with calculating failure probabilities 
using the Hasofer-Lind method is nevertheless worthwhile, given it’s relative 
simplicity and the fact that it leads nicely into the more complicated methods that 
are available and indeed are actually more appropriate for use. 

The Hasofer-Lind method introduces the 'reduced' variables as: 

R r

R µ R−

σ R  

 

S r

S µ S−

σ S  

(15) 

By substitution, the above limit state equation (equation 14) then becomes: 

g X( ) R r σ R⋅ S r σ S⋅− µ R+ µ S− 0
 (16) 

The coordinates of the intercepts of the above limit state equation on the 
(transformed) Rr and Sr axes can be shown to be as follows: 

I R

µ R µ S−( )−

σ R
0,

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦ 

 

I S 0
µ R µ S−

σ S
,

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠ 

(17) 

Therefore from simple trigonometry, the distance from the origin to the failure 
surface as defined by the limit state equation is as follows: 

β HL

µ R µ S−

σ R
2

σ S
2

+  

(18) 

This distance (as described by the parameter βHL) is referred to as the 'reliability 

index'.  In addition, the point x* is often used in references discussing FOSM (and 
indeed FORM/SORM) which represents the coordinates of the minimum distance 
from the origin of the joint probability distribution to the limit state (often referred 
to as the Most Likely Failure Point (MLFP) or 'design point').   
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The Hasofer-Lind reliability index can be used to calculate a first-order 
approximation of the failure probability as: 

P f Φ β HL−( ) (19) 

Where Φ refers to the integral of the standard normal density function along the 
chord joining the origin of the 'reduced' axes to the 'MLFP' x*.  From basic analyses, 
it becomes obvious that the nearer x* is to the origin, the larger is the failure 
probability.  Thus the point of minimum distance from the origin to the limit state 
surface (x*), represents the worst-case combination of the stochastic variables and 
is appropriately named the 'most probable point of failure' or 'design point'. 

At the 'MLFP' (x*), the direction cosines, along the coordinate axes (in 'reduced' 
coordinates) are calculated as follows: 

α i

X i_r
g X( )

∂

∂

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

¤

1

n

i
X i_r

g X( )
∂

∂

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

2¤

∑
=  

 

for I = 1,2..n 

(20) 

note: the symbol "¤" denotes that the derivatives are to be determined at the MLFP.  
In the space of the original coordinates, the MLFP x* can be calculated as: 

x
¤

µ Xi α i σ Xi⋅ β HL⋅−  
(21) 

If we assume R and S are (normal) random variables which represent 'resistance' and 
applied 'load' and that the limit state equation in the original coordinate system is 
definable by equation (14), then the limit state equation in the reduced coordinate 
system is definable by equation (16); Differentiating (16) with respect to Rr and Sr 

yields the following: 

R r
g X( )

∂

∂
σ R

 

 

S r
g X( )

∂

∂
σ S−

 

(22) 

The direction cosines are then calculated in accordance with the expression above 
as follows: 
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α R

R r
g X( )

∂

∂

R r
g X( )

∂

∂

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

2

S r
g X( )

∂

∂

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

2

+

 

(23) 

 

α S

S r
g X( )

∂

∂

R r
g X( )

∂

∂

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

2

S r
g X( )

∂

∂

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

2

+

 

(24) 

The above expressions in (23) and (24) reduce, on substitution, to the following: 

α R

σ R

σ R
2

σ S
2

+  

 

α S

σ S−

σ R
2

σ S
2

+  

(25) 

Where: 

αR cos θR( ) 
αS cos θS( ) 

(26) 

From the above expression (x¤ µXi α i σXi⋅ βHL⋅− ) in 'reduced' coordinates where 

µXi 0, the coordinates of the 'MLFP' can be calculated as follows: 

r r
¤

α R− β HL⋅
σ R−

σ R
2

σ S
2

+

β HL⋅

 

 

s r
¤

α S− β HL⋅
σ S

σ R
2

σ S
2

+

β HL⋅

 

(27) 

Substituting back into the limit state equation (in 'reduced' form) gives the 
following: 
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β HL

µ R µ S−

σ R
2

σ S
2

+  

(28) 

Thus indicating that the computational method used works correctly.  Further, re-

using the above expression (x¤ µXi α i σXi⋅ βHL⋅− ) the 'MLFP' in the original 

coordinates is given as: 

r
¤

µ R

σ R

σ R
2 σ S

2+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

σ R

µ R µ S−

σ R
2 σ S

2+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅−
µ R σ S

2⋅ µ S σ R
2⋅+

σ R
2

σ S
2

+
 

 

s
¤

µ S

σ S−

σ R
2 σ S

2+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

σ S⋅
µ R µ S−

σ R
2 σ S

2+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

⋅−
µ R σ S

2⋅ µ S σ R
2⋅+

σ R
2

σ S
2

+
 

(29) 

In this case r¤ s
¤ thus indicating that the 'MLFP' lies on the limit state line.  Mean-

Value FOSM (MVFOSM) methods are readily usable in that the reliability index and 
failure probabilities are calculable as follows: 

β
µ R µ S−

σ R
2

σ S
2

+  

 

P f Φ β−( )
 

(30) 

There are however, several important observations that may be made: 

1. As long as the limit state equation of R and S is linear and all variables are 
normally distributed, the safety indices and failure probabilities calculated 
using MVFOSM and Hasofer-Lind methods will be exactly the same.  
However, MVFOSM does not make use of any information with regard to the 
distribution of R and S, whereas Hasofer-Lind is applicable when they are 
normally distributed. 

2. The most important difference is that in the MVFOSM method, the MLFP is at 
the mean values of R and S, indicating that they are not on the limit state 
line, whereas with the Hasofer-Lind method the 'MLFP' is on the limit state 
line.  This can be shown through the following example. 

4.2.1 Example: Mean-Value FOSM versus Hasofer-Lind 

Suppose a cable of resistance R has to support a weight S.  Assuming both R and S 
are normally distributed where (units are psi): 

Mean Resistance (psi): µ R 120000:=  

Standard Deviation (Resistance (psi)): σ R 18000:=  



 

 

Statistical & Probabilistic Analyses – Guidelines For Use During The 
Assessment Of Plant Or Equipment Integrity 

 

 
Rev 00 Page 34 of 55 KL Consulting (UK) Limited 

 

Mean Load (psi): µ S 50000:=  

Standard Deviation (Load (psi)): σ S 12000:=  
 

In this case, as both are normally distributed (and assuming that the limit state 
equation is linear) then: 

β MVFOSM β HL  

 

Calculate the Reliability Index: 
β

µ R µ S−

σ R
2

σ S
2

+

:=

 

 

β 3.236 

 

Define the Standard Normal Probability 
Distribution PDF: f x( )

1

2 π⋅
exp

x
2

2−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

 

 

Calculate Reliability: 
R c

∞−

β

xf x( )
⌠
⎮
⌡

d:=

 

 

R c 0.999393
 

 

Calculate Failure Probability: 
Pfail 1

∞−

β

xf x( )
⌠
⎮
⌡

d−:=  

 

Pfail 6.066 10
4−

×=  

 

The coordinates of the 'MLFP' according to MVFOSM however are (120 ksi, 50 ksi); 
according to Hasofer-Lind the coordinates of the 'MLFP' are: 

Coordinates of the ‘Resistance’ 
(Hasofer-Lind Method): r

µR σS
2⋅ µS σR

2⋅+

σR
2 σS

2+
:=  

 

r 7.154 10
4

×=  
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Coordinates of the ‘Load’ (Hasofer-
Lind Method): s

µR σS
2⋅ µS σR

2⋅+

σR
2 σS

2+
:=  

 

s 7.154 10
4

×=  

 

The coordinates for the 'MLFP' are (71.54 ksi, 71.54 ksi), according to the Hasofer-
Lind method, indicating that it is on the limit state equation. 

4.3 First Order Reliability Method (FORM) - Introduction 

The First Order Reliability Method (FORM) involves the transformation of a set of 
basic random variables ‘xi’ to a set of equivalent standard normally distributed 
variables ‘ui’.  The transformation is achieved as: 

[ ])(1
iii xFu −Φ=   

and the inverse transformation: 

( ) ( )( )iii uFx Φ= −1   

Where � represents the cumulative standard normal distribution, Fi(xi) is the 
cumulative probability distribution of the variable xi and �-1 and F-1 are the 
corresponding inverse functions.  The method requires that the transformation to 
equivalent standard normal variables be achieved such that: 

( ) ( )ii uFxF =  & 

( )( )ii uFFx 1−=  
 

This transformation produces a ‘space’ of variables which are distributed such that 
the joint probability density distribution is rotationally symmetric.  The joint 
distribution is then a function of the distance ‘r’ from the origin and has the 
explicit form: 

( )
π

φ
2
2

exp
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

=

r

u  
 

The notation used in the above expressions is conventional where the lower case 
symbol φ denotes density distribution and the upper case symbols � and F denotes 
cumulative distributions. 

The point in standard normal space (or u-space) where the proximity of the failure 
surface (g(x)=0) to the origin of the joint probability density distribution is a 
minimum, is considered to have the highest probability density and consequently is 
the most likely point of failure.  The First Order Reliability Method involves locating 
this point in u-space, where r(u) is determined as: 

( ) ( ) ( ) ( ) ( )[ ]2
1

22
3

2
2

2
1 ...... iuuuuur +++=   
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and the point at which r(u) is a minimum (in u-space) is defined as the First Order 
Reliability Index ‘β’ and this represents the most likely point of failure. 

The First Order Reliability Method approximates the ‘failure surface’ as a tangent 
line at the most likely failure point (i.e. where min⏐r(u)⏐=β), as illustrated in 
Figure 15; since the joint probability density distribution is rotationally symmetric 
about the origin, the coordinates are transformed by rotating about the origin to 
produce a new axis ‘zi’ such that it passes through the most likely failure point.  
The failure probability (Pf) is then evaluated as: 

( )∫
∞

=
β

φ iif dzzP .   

Or, in conventional notation: 

( )β−Φ=fP   

In essence therefore, FORM involves searching for the minimum value of r(u) (in u-
space) and calculating a failure probability based on the integration detailed above. 

 

Figure 15: FORM – Transformation of Variables and Calculation of the Most Likely Failure 
Point (or ‘Design Point’). 

4.3.1 Example Calculation: FORM by Constrained Minimisation 

There are two methods available for use, and these are: (i) Constrained 
Minimisation and (ii) Newton-Raphson recursive type method.  This section deals 
with the procedure for solving the FORM equations using the method of Constrained 
Minimisation. 

The procedure for determining the solution to the equations is relatively simple; as 
before, the syntax used below is written in MathCAD format and is therefore easily 
transferable into an analysts calculation sheet as it is shown herein.  The procedure 
also makes use of the MathCAD solve block, and the ‘Minimize’ function; in the 
absence of MathCAD therefore, alternative analytical methods would be required to 
solve the equations. 
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The FORM technique requires location of the most likely point of failure.  This is 
achieved through a process of constrained minimisation, expressed as Minimise r(u), 
subject to the constraint M(u) = 0; in this case the function r(u) is defined as 
follows: 

r u( ) u1( )2 u2( )2+ ............. uN( )2+  
 

where r(u) is the distance from the origin (in u-space) and M(u) is the safety 
margin.  Consider the following scenario for a component with known strength 
characteristics which is subject to known variable loadings, defined as follows: 

Mean Resistance (ksi): µ R 22:=  

Standard Deviation (Resistance (ksi)): σ R 2.2:=  

Mean Load (ksi): µ S 10:=  

Standard Deviation (Load (ksi)): σ S 3:=  
 

The procedure for solving the FORM equations is detailed as follows: 

Step Description MathCAD Syntax 
1 Define the cumulative distribution function (standard 

normal cumulative distribution function): Φ z( ) cnorm z( ):=  

2 Transform the basic input variables into equivalent 
standard normal variables for Resistance ‘R’ and Load 
‘S’: 

R z( ) qnorm Φ z( ) µ R, σ R,( ):=  

S z( ) qnorm Φ z( ) µ S, σ S,( ):=  
3 Define the point of constrained minimisation by 

setting the initial values to zero (M(u) = 0):  

(note: the suffixes used in u1 and u2 are matrix 
references and not sub-scripts; the solution will not 
function correctly if matrix references are not used) 

u1 0:=  

u2 0:=  

4 Define the function which describes the most likely 
point of failure (in u-space): r u( ) u1( )2 u2( )2+:=  

5 Find the minimum value of r(u) using the technique of 
constrained minimisation: 

Given 

R u1( ) S u2( )− 0 

r u( ) Minimize r u,( ):=  
6 Coordinates of Most Likely Failure Point (MLFP) in u-

space:  

(note: the ‘T’ in the expression for r(u) simply tells 
MathCAD to ‘transpose’ the matrix output from a 
single column to single row matrix) 

r u( )
T

1.908− 2.601( )=  

7 Calculate the First Order Reliability Index, β: 

(note: the suffixes used in r(u)1 and r(u)2 are matrix 
references and not sub-scripts; the solution will not 
function correctly if matrix references are not used) 

β r u( )1( )2 r u( )2( )2+:=  

 

β 3.226=  
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8 Define the standard normal function: 

f x( )
1

2 π⋅
e

x
2

2−
⋅:=

 
9 Calculate the failure probability: 

Pf 1
∞−

β

xf x( )
⌠
⎮
⌡

d−:=  

 

Pf 6.285 10
4−

×=  

It is possible to display the above calculations graphically, similar to the idealised 
illustration in Figure 14; the solution of the above equations and the plotting of the 
failure surface was achieved using a separate analytical routine (not shown) and 
plots the failure surface for the above example based on the limit state equation 
g(x) = R – S with the results being presented in standard normal space (or u-space); 
this is illustrated graphically below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Failure Surface Plotted in Standard Normal Space (Co-ordinates of β  are 
illustrated with respect to the failure surface also) 

The above illustrates the coordinates of the Most Likely Failure Point (MLFP), which 
is the minimum distance in u-space from the origin of the joint probability 
distribution (the origin is at zero in the above plot); the dotted blue line illustrated 
above is the First Order Reliability Index (β). 

General Comments 

It must be recognised that FORM, and indeed MVFOSM and Hasofer-Lind methods, 
are approximations; they merely provide estimates of Reliability (or probability).  
The aforementioned methods make assumptions regarding the nature of the limit 
state equation (i.e. the failure surface is assumed to be linear with FORM); 
inaccuracies resulting from FORM are often manifested as a direct consequence of 
the non-linear variation of all points along g(x) = 0; in such cases, the more detailed 
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Second-Order Reliability Method (SORM) is often required.  Indeed, statistical errors 
may also result in FORM or SORM when transforming the basic variables to 
equivalent standard normal variables.  Transformation of variables and the 
assumptions in respect of the nature of the limit state equation are not actually 
required when using the Monte Carlo simulation method; consequently, this method 
is considered to be the primary yard-stick upon which to determine the accuracy 
and validity of FORM (and SORM, as appropriate). 

The Monte Carlo numerical technique, the Monte Carlo simulation, involves the 
random sampling of the ‘load’ and ‘resistance’ variables to artificially simulate a 
large number of experiments and to observe the outcome thereof.  In the case of 
the above example this involves sampling each of the random variables from their 
respective distributions and evaluating the failure surface (definable for all g(x)=0) 
as the limit state for those values to determine whether a failure situation (which is 
definable for all g(x)<0), is likely to occur.  This artificial experiment is repeated 
many times, each time with a new random vector of variables.  Therefore for N 
trials, the probability of failure is determined as: 

( )( )
N
xgnPf

0<
=   

where n(g(x)<0) denotes the number of trials for which g(x)<0. 

In the case of Monte Carlo simulation, there is an obvious relationship between the 
number of trials N and the degree of accuracy on Pf.  By performing a large number 
of iterations, the ratio of the number of failure outcomes to the total number of 
iterations tends to the exact probability of failure.  The primary limitation is the 
number of iterations required, and although Monte Carlo simulations are easily 
applied, they are more or less limited to determining failure probabilities in the 
vicinity of 10-5 per year and above (bear in mind though that for a 10-5 per year 
failure probability this would require approximately 107 iterations to be 
performed). 

The following MathCAD routine was developed to illustrate the Monte Carlo 
simulation method, and to illustrate the general accuracy of FORM in this particular 
instance.  As before the syntax used is standard MathCAD syntax and is therefore 
easily transposed into an analysts calculation sheet as it is: 

Step Description MathCAD Syntax 
1 Define the number of sample experiments to be 

performed in the simulation n 50000:=  

2 Specify the calculation range j 1 n..:=  
3 Random number generators (the two routines generate 

random numbers on the interval 0,1) 

(note: the suffixes used in ej and mj are matrix 
references and not sub-scripts; the solution will not 
function correctly if matrix references are not used) 

ej rnd 1( ):=  

 

mj rnd 1( ):=  

4 Generate random vectors for ‘R’ and ‘S’ Rj qnorm ej µR, σR,( ):=  

 

Sj qnorm mj µS, σS,( ):=  

5 Define the limit state equation Mj Rj Sj−:=  
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6 Define a condition statement for the condition where 
the load exceeds the resistance (i.e. the failure 
condition) and sum the total number of samples where 
this condition is observed 

Ij 1 Mj 0<if

0 otherwise

:=  

 

nf

j

Ij∑:=  

nf 38=  

7 Calculate the probability of failure (which is the ratio 
of the total number of samples where the failure 
condition is satisfied and the total number of samples) 

Pfail
nf

n
:=  

Pfail 7.6 10
4−

×=  

 

The Monte Carlo simulation method is illustrated graphically below for the above 
example; this illustrates the outcome of each sample and where each resides 
relative to the failure condition (the failure condition being the sample results 
which extend beyond the boundary indicated by the blue dotted line): 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Monte Carlo Simulation 

The algorithms used in the Monte Carlo simulation method are very simple as can 
be seen; care must nevertheless be taken to ensure that the random vector of 
variables being generated during the simulation are correctly defined.  One very 
simple check is to determine whether the random vector of variables generates the 
pre-defined means of the known input data for R and S, as follows: 

Step Description MathCAD Syntax 
1 Calculate the mean Resistance ‘R’ from the vector 

generated in the simulation routine Rmean
1

n
j

Rj∑⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

 
 

Rmean 21.992=  
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2 Calculate the mean Load ‘S’ from the vector 
generated in the simulation routine Smean

1

n
j

Sj∑⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=  

 

Smean 9.991=  

 

The outputs illustrated above show that the vector of random variables provides 
samples with mean Resistance of 21.992 ksi and mean Load of 9.991 ksi; these 
values compare very favourably with the pre-defined values of 22 ksi and 10 ksi, 
respectively, thus confirming that the random samples generated are reliable. 

More importantly however, the above calculations show that the failure 
probabilities are in good agreement, with FORM indicating a failure probability of 
6.3. x 10-4 and the Monte Carlo Simulation 7.6 x 10-4.  This confirms the validity of 
FORM for estimating failure probabilities; moreover FORM requires considerably less 
computing power than does the Monte Carlo simulation, thus making the method 
more preferable for practical applications. 

4.3.2 Example Calculation: FORM by Newton-Raphson Type Recursive Method 

The following example is very simple, although the precise calculation methods 
used are somewhat involved.  All calculations are presented to the extent possible 
for the first iteration only (a recursive method involves a number of iterations until 
convergence of the pre-defined solution criteria become satisfied); thereafter, the 
user progresses through the calculations until the convergence criteria are satisfied. 

The example below illustrates how the Newton-Raphson type recursive method 
works; the calculations below considers a structural steel bar which is subject to a 
deterministic bending moment; the properties of the bar are pre-defined with the 
probability distributions which define the yield stress and plastic modulus being 
considered as log-normal and normal (or Gaussian), respectively. 

Mean Yield Stress (ksi): F y 38:=
 

Standard Deviation (Yield (ksi)): σ Fy 3.8:=  

Mean Plastic Modulus (in3): Z 54:=  

Standard Deviation (Plastic Modulus 
(in3)): 

σ z 2.7:=  

Deterministic Applied Bending Moment 
(kip-in): M 1140:=  

 

There are two ways in which this problem can be solved; first is to consider the 
limit state equation in the context of the ‘strength’ relationship (where the limit 
state is 1140)( −= ZFxg y ) or secondly, to consider the limit state equation in the 

context of the ‘stress’ relationship (where the limit state equation is 

Z
Fxg y

1140)( −= ); for the purposes of these guidelines, the solution presented 

considers the limit state equation in the context of the ‘strength’ relationship. 
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The procedure for solving the FORM equations is detailed as follows: 

Step Description MathCAD Syntax 

1 Step 1: Input the Limit State Equation g F y Z⋅ 1140−:=
 

2 Step 2: Evaluate the Limit State g 912=  

3 Step 3: Transform non-normal variables to equivalent normal variables and determine the initial 
coordinates of the MLFP 

Fy is log-normal and therefore must be transformed to equivalent normal values.  This is achieved as 
follows: 

The log-normal distribution for 
parameter x 

fx x( )
1

2 π⋅ ξ⋅ x⋅
e

1−

2

ln x( ) λx−

ξx

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

2

⋅

⋅  

 

0 x≤ ∞<  

Where 
λx E ln x( )( ) ln µx( )

1

2
ξx

2
⋅−  

 

ξx
2 Var ln x( )( ) ln 1

σx

µx

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

2

+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

ln 1 δx
2+⎛

⎝
⎞
⎠ 

Giving 
ξ x ln 1 δ x

2
+⎛

⎝
⎞
⎠ 

The equivalent normal mean and 
standard deviation at the 'MLFP' 

(note: the suffix N denotes normal) 

σx_N ξx x
¤

⋅  

 

µx_N x
¤

1 ln x
¤( )− λx+⎛

⎝
⎞
⎠⋅  

Initially, the coordinates of the 'MLFP' are assumed to be the means values of the variables.  Thus, 
transforming the variables gives the following: 

Determine Parameter ξ 
ξFy ln 1 δFy

2
+⎛

⎝
⎞
⎠:=  

 

ξFy 0.0997513=  

Determine Parameter λ 
λFy ln Fy( ) 1

2
ξFy

2
⋅−:=  

 

λFy 3.632611=  

Determine Equivalent Normal Mean µFy_N Fy 1 ln Fy( )− λFy+( )⋅:=  

 

µFy_N 37.811=  
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Determine Equivalent Normal 
Standard Deviation 

σFy_N ξFy Fy⋅:=  

 

σFy_N 3.791=  

Compute the mean and standard 
deviation at the 'MLFP' of the 
equivalent normal distribution for 
variables which are non-normal.  This 
is calculated as: 

x i_N
¤

x i_N µ i_N−

σ x_N  

Using the above expression, the 
coordinates of the 'MLFP' in the 
equivalent standard normal space are: 

f¤_N

Fy µFy_N−

σFy_N
:=  

 

f¤_N 0.05=  

and: 

z¤_N
Z Z−

σz
:=  

 

z¤_N 0=  

4 Step 4: Evaluate the partial derivatives at the 'MLFP' 

yF
g

∂

∂

                     Z
g
∂

∂
 

 

Therefore the derivatives at the 'MLFP' are: 

 

¤

¤

z
F
g

y

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
         and               ¤

¤

f
Z
g

=⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
 

Derivative of Z (plastic modulus) at the 
MLFP z¤

Fy
Fy Z⋅ 1140−( )∂

∂
:=  

 

z¤ 54=  

Derivative of F (yield stress) at the MLFP 
f¤

Z
Fy Z⋅ 1140−( )∂

∂
:=  

 

f¤ 38=  

5 Step 5:  Compute the partial derivatives in the equivalent standard normal space at the MLFP: 

Nix
g

_∂

∂
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This is achieved using the chain rule of differentiation; 

Nx
iNi

i

iNi x
g

x
x

x
g

x
g

_
__

.. σ
∂

∂
=

∂

∂

∂

∂
=

∂

∂
 

Thus: 

NFy
yNy F
g

F
g

_
_

.σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=

∂

∂
       and          z

N Z
g

Z
g

σ.⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
=

∂

∂
 

Putting 

 

NFy
yF
gp _.σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=                 and                 zZ

gq σ.⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
=       (note: Z is already normal) 

 

p
Fy

Fy Z⋅ 1140−( )∂

∂

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

σFy_N⋅:=  

 

p 204.69=  

 

q
Z

Fy Z⋅ 1140−( )∂

∂

⎡
⎢
⎣

⎤
⎥
⎦
σz⋅:=  

 

q 102.6=  

6 Step 6:  Determine the coordinates of the new 'MLFP' in the equivalent standard normal space. 

This is achieved using the Newton-Raphson type recursive algorithm as follows: 

[ ] )(.)().(.
)(

1 ¤¤¤¤
2¤

¤
1

N
k

N
k

N
k

N
k

N
k

N
k xgxgxxg

xg
x ∇−∇

∇
=+  

The above expression is a very generalised formula for non-linear limit state equations where:  

)( ¤N
kxg∇   is the gradient vector of the limit state equation 

)( ¤N
kxg   is the limit state function evaluated at the 'MLFP'. 

 For clarity, the above parameters are definable in this example as: 

¤
22

_

2¤ )(
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=∇

Z
g

F
gxg
Ny

N
k  

 

NN
NY

N
k

N
k z

Z
gf

F
gxxg _¤

¤

_¤

¤

_

¤¤ ..).( ⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=∇  

where "¤" denotes 'MLFP'.  The new coordinates of the MLFP therefore become: 
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{ }
¤

_
_¤

¤

_¤

¤

_
¤

22

_

_¤ ....1
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

=
Ny

NN
Ny

Ny

N F
ggz

Z
gf

F
g

Z
g

F
g

f  

 

{ }
¤

_¤

¤

_¤

¤

_
¤

22

_

¤ ....1
⎭
⎬
⎫

⎩
⎨
⎧
∂

∂

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

=
Z
ggz

Z
gf

F
g

Z
g

F
g

z NN
Ny

Ny

 

Therefore the new coordinates are calculated as follows: 

New_f¤_N
1

p
2

q
2

+

p f¤_N⋅ q z¤_N⋅+ g−( )⋅ p⋅:=  

 

New_f¤_N 3.521−=
 

New_z¤_N
1

p
2

q
2

+

p f¤_N⋅ q z¤_N⋅+ g−( )⋅ q⋅:=  

 

New_z¤_N 1.765−=  
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7 Step 7:  Calculate the distance from the origin to the new 'MLFP'. 

This is calculated as follows: 

β

1

n

i

x i_N
¤⎛

⎝
⎞
⎠

2

∑
=  

 

Therefore the First Order Reliability Index is: 

 

β New_f¤_N
2

New_z¤_N
2

+:=  

 

β 3.939=  

 

Define the normal distribution of variable 'x' 

 

f x( )
1

2 π⋅
exp

x
2

2−

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠

⋅:=

 

 

Calculate the failure probability: 

Pf 1
∞−

β

xf x( )
⌠
⎮
⌡

d−:=  

 

Pf 4.099 10
5−

×=  

8 Step 8:  Determine the new coordinates of the iteration point in the original coordinates.  This is 
easily calculated using the following: 

x i
¤

µ i_N σ i_N x i_N
¤

⋅+
 

 Giving 
 

New_Fy µFy_N σFy_N New_f¤_N⋅+:=  

 

New_Fy 24.464=  

 

 

New_Z Z σz New_z¤_N⋅+:=  

 

New_Z 49.235=  

 These are the revised values of both Fy and Z.  The limit state equation is then evaluated using 

these revised coordinates as follows: 

New_g New_Fy New_Z⋅ 1140−:=  

 

New_g 64.5=  
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 This is the end of iteration one; the solution to the revised limit state equation after iteration 
one still does not yield zero, or even a value close thereto (in this case New_g = 64.5); 
consequently, a number of iterations are required until the revised limit state equation converges 
to zero.  This convergence will yield the coordinates of the Most Likely Failure Point (MLFP) (or 
design point) and hence failure probability. 

The Newton-Raphson type recursive method is clearly an iterative process and as such the 
calculations as detailed above will be required to be repeated until pre-defined convergence 
criteria are satisfied.  Usually, the criteria for convergence of g is a tolerance of 0.01, or less.  
Therefore, the calculation as shown above will require repetition until this criteria is satisfied.  
Using the above calculations, repeating all of the steps is very easy (if tedious) and simply 
involves proceeding to the next iteration by going back to step 3 and reassigning revised values 
for both f and z. 

The convergence criteria are satisfied in this case following eight (8) iterations; the solution is 
detailed as follows: 

(i) coordinates of the MLFP (in u-space):  fN = -4.465     zN = -2.568 

 

(ii) First Order Reliability Index   β = 5.151 

 

(iii) Failure probability   Pf = 1.297 x 10-7 

 

 

4.4 Second Order Reliability Method (SORM) 

The Second Order Reliability Method, SORM, basically takes the FORM approach 
further by accounting for the curvature in the limit state (it is the curvature of the 
limit state around the Most Likely Failure Point (MLFP) which determines the 
accuracy of the FORM approximation - the reliability indexes will be the same but 
SORM modifies the failure probability to account for the curvature of the limit 
state). 

The first task is to compute the FORM reliability Index.  There are two methods 
available to determine the MLFP and corresponding reliability index using the FORM 
technique – shown above.  The SORM calculations therefore require the FORM 
Reliability Index and associated direction cosines as inputs. 

Calculations performed during the SORM treatment are designed primarily to 
account for limit state functions which are non-linear; for linear limit states the 
FORM estimate will provide an accurate estimate of failure probability.  However, 
where the limit state is non-linear, the failure probability will be erroneous largely 
on account of the fact that the curvature has an effect on the actual failure domain 
(where this curvature is ignored in FORM).  In other words, SORM improves the 
result by including information about the curvature of the limit state. 

4.4.1 Calculation of the Direction Cosines 

Direction cosines are not required in the solution to the FORM equations; they 
however important pre-cursors to the solution of the SORM equations and so the 
procedure for the calculation thereof is presented within this section of narrative.   

Direction cosines reflect the fact that the primary parameters are actually Vectors – 
they have magnitude as well as direction; the direction in which a force is applied 
is reflected in the associated direction cosine for the said force.  The direction 
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cosines in the above example (as detailed in Section 4.3.2) are calculated as 
follows: 

General expression for calculating the 
direction cosine for a given Vector is: 

∑
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

=
n

i
Xi

i

NXi
i

Xi

X
g

X
g

1

2¤

_

_

¤

.σ

σ

α  

For the limit state equation defined in 
Section 4.3.2: 

1140.)( −= ZFxg Y  

Direction cosine for Fy is: 

2¤

_

2¤

_

_

¤

.. ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

=

NzNFy
y

NFy
y

Fy

Z
g

F
g

F
g

σσ

σ

α  

Direction cosine for Z is: 

2¤

_

2¤

_

_

¤

.. ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

=

NzNFy
y

Nz

Z

Z
g

F
g

Z
g

σσ

σ
α  

Using the definitions for ‘p’ and ‘q’ as illustrated above in Section 4.3.2 

That is:    NFy
yF
gp _.σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
=         and            zZ

gq σ.⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
=  

Direction cosine for Fy is: 
αFy

p

p
2

q
2

+

:=  

 

αFy 0.894=  

Direction cosine for Z is: 
αz

q

p
2

q
2

+

:=  

 

αz 0.448=  

4.4.2 SORM Calculation 

The failure probability using SORM was derived by Breitung (1984) using the theory 
of asymptotic approximations and is given as: 
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∏
−

=

−
+−Φ=

1

1

2
1

)1().(
n

i
ifP βκβ  (31) 

Where κ denotes the principal curvature of the limit state at the MLFP and β is the 
reliability index calculated using FORM. 

Brietung's SORM method makes use of a parabolic approximation and as such does 
not use a general second order approximation in that it ignores mixed terms and 
their derivatives in the Taylor series approximation of the non-linear limit state 
equation.  Instead the approach makes use of the theory of asymptotic 
approximation, which in reality is only accurate for larger values of β. 

Once the value of β becomes lower, the SORM estimate can become inaccurate, in 
which case the user should then make use of the Tvedt approaches (Tvedt, L., 
"Distribution of Quadratic Forms in Normal Space - Application to Structural 
Reliability", Journal of Engineering Mechanics, ASCE, Vol. 116, No.6, pp1183-1197, 
(1990)).  The approach detailed below covers Brietung's approach. 

When evaluating κ, the variables are rotated to another set of variables, where this 
involves the orthogonal transformation from Y to Yn space, where: 

YRY .' =   

The transformation involves the so-called Gram-Schmidt Orthogonalisation 
procedure.  The first step is to construct a matrix R0: 

General procedure for construction of 
the R0 matrix is as follows: 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

n

R

ααα !!!
""""""

!!
!!!

21

0

1010
001

 

The number of elements of the R0 matrix clearly depends on the number of variables in the limit state 
equation; in this example there are merely two variables, Fy and Z, therefore the R0 matrix is constructed 
as: 

R0 matrix (example calculation) 

R 0

1

α Fy

0

α z

⎛⎜
⎜
⎝

⎞⎟
⎟
⎠ 

 

The Gram-Schmidt Orthogonalisation procedure (G-S) considers a matrix with row 
vectors r01, r02,......r0n, transforms to a matrix R whose row vectors r1, r2,..........rn 
are orthogonal to each other, with the nth row the same as in matrix R0; i.e. 
rn r0n. 

Step 1:  Gram-Schmidt Orthogonalisation procedure 

General Gram-Schmidt formula 

∑
+=

−=
n

kj
jT

jj

T
kj

kk r
rr
rr

rr
1

0
0 .

.
 

Where the superscript 'T' means the 'transpose' of the row vector (note: the rows of R have to be 
computed in reverse order, from n to 1).  In this case, the rows of R are required to be orthonormal, in 
which case each of the rows requires to be normalised upon completion (so that the row vector is of unit 
length). 
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In this example, the second row is r2 0.867 0.498,( ).  To compute the first row, the above expression is 

used, where in this case k=1 and n=2.  Thus:   

Calculating the row vectors: r0k 1 0( ):=  

 

r0k
T 1

0

⎛
⎜
⎝

⎞
⎟
⎠

=  

rj αFy αz( ):=
 

 

rj
T 0.894

0.499

⎛
⎜
⎝

⎞
⎟
⎠

=  

Gram-Schmidt treatment: 

r1 r0k

rj r0k
T

⋅

rj rj
T

⋅

rj⋅−:=  

 

r1 0.237 0.425−( )=  

Thus, normalising the elements of r1 
to produce a unit vector: 

r1 αz αFy−( ):=  

 

r1 0.499 0.894−( )=  

Therefore the matrix R becomes: 

R
α z

α Fy

α Fy−

α z

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=

 
Step 2:  Derive Matrix ‘A’ 

The matrix 'A' is derived, whose 
elements which are denoted aij is 
calculated as follows: aij

R D⋅ R
T

⋅
⎛
⎝

⎞
⎠ij

ΔG y
¤( )

 

 
 

i j 1, 2, n 1−..  

Where D is the n x n second-derivative matrix of the limit state equation in the standard normal space 

evaluated at the MLFP, R is the rotation matrix and ΔG y
¤( ) is the length of the gradient vector in the 

standard normal space. 

In the rotated space, the last variable (Yn) coincides with the β-vector calculated in FORM.  In the 
following treatments the last row in the transformed Yn vector is dropped to take account of this.   

The limit state can then be re-written 
in terms of the second order 
approximation as: 

y n
'

β
1

2
y n

T
⋅ A⋅ y

'
⋅+

 

The curvatures κi  as used in Breitung's formula are calculated as the eigenvalues of the matrix A. 

  

Step 3: SORM Solution  

Input the coordinates of the MLFP in 
the standard normal space, as 
determined above when the 
convergence criteria are satisfied: 

f¤_N 4.465−=  

 

z¤_N 2.568−=  
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The rotation matrix is R 
R

0.499

0.894

0.894−

0.499

⎛
⎜
⎝

⎞
⎟
⎠

=  

Construction of the D matrix which contains the second derivatives of the limit state equation in the 
standard normal space is achieved as follows (using the chain rule of differentiation): 

NyNFyNFyy ff _*__* .σµ +=  

NNzNz zz *__* .σµ +=  

Note: the above expressions define the MLFP in the original coordinates and not standard normal 
coordinates.  The derivatives of the above expressions are calculated as follows: 

( ) .0... __
__

2
_

2

=
∂

∂
=

∂

∂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂

∂

∂

∂

∂
=

∂

∂
NFyNFy

yNy

y

Ny

y

yyNy

Z
FF

F
F
F

F
g

FF
g

σσ  

 

( ) 0....2

2

=
∂

∂
=

∂

∂

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂

∂

∂
=

∂

∂
zzy

NNN

F
ZZ

Z
Z
Z

Z
g

ZZ
g

σσ  

 

NFyzNFyzy
yNy

y

NyNNy

F
FF

F
Z
Z

Z
g

FZF
g

__
__

2

.).(..
.

σσσσ =
∂

∂
=

∂

∂

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂

∂

∂

∂

∂

∂
=

∂∂

∂
 

 

Thus, the equivalent normal mean and standard deviation of Fy at the MLFP is given by µf¤  and σ f¤. 

(where ¤ in the suffixes denotes MLFP).  It is these values that must be used when calculating the matrix 
D. 

Calculate matrix ‘D’ 

D
0

σz σf¤⋅

σz σf¤⋅

0

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  

 

D
0

6.523

6.523

0

⎛
⎜
⎝

⎞
⎟
⎠

=  

The length of the gradient vector at the MLFP is then calculated.  In order to calculate this two 
derivatives need to be evaluated: 

NFy
Ny

y

yNy

Z
F
F

F
g

F
g

_
__

.. σ=
∂

∂

∂

∂
=

∂

∂
 

 

zy
NN

F
Z
Z

Z
g

Z
g

σ.. =
∂

∂

∂

∂
=

∂

∂
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Therefore the gradient vector 
becomes: 

Δg
z¤_i σf¤⋅

f¤_i σz⋅

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:=  

 

Δg
113.717

65.396

⎛
⎜
⎝

⎞
⎟
⎠

=  

The magnitude of the gradient vector 
is then: 

Δg 131.18=  

Therefore the matrix A is calculated 
as: A

1

Δg
R⋅ D⋅ R

T
⋅:=  

 

A
0.044−

0.027−

0.027−

0.044

⎛
⎜
⎝

⎞
⎟
⎠

=  

The rotation of coordinates makes the last variable coincide with the β-vector.  Therefore the last row 
and last column of the matrix A are dropped from future consideration.  Therefore the eigenvalue of the 
remaining element a00 is simply κi 

Principal curvature of the limit state 
equation is given as: 

κ A0 0,:=  

 

κ 0.044−=  

Therefore the SORM failure probability 
becomes: Pf_SORM cnorm β i−( ) 1 β i κ⋅+( ) 0.5−

⋅:=  

 

Pf_SORM 1.476 10
7−

×=  

For comparison with FORM, the failure 
probability can be converted back to 
an equivalent value of β as follows: 

βSORM qnorm Pf_SORM 0, 1,( )−:=  

 

βSORM 5.126=  

Comparison of results (FORM versus 
SORM): 

βFORM = 5.151 

βSORM = 5.126 

 

Pf_FORM = 1.297 x 10-7 

Pf_SORM = 1.476 x 10-7 
 

The above analysis highlights the general approach to solving the SORM equations.  
The treatments are rather complex mathematically, and will vary with the limit 
state equation.  The narrative deliberately excludes much of the detail and theory 
relating to SORM as there is a vast wealth of information readily available in the 
literature for the analyst to peruse; the intention of this document is merely as a 
guideline on how the equations are solved using simple example calculations.  Often 
a lot of the narrative available in the literature does not include example 
calculations, and it is the authors considered opinion that example calculations 
provide significant insight to the novice of how the formulae may be used in 
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practice and it was this approach which has been adopted more or less throughout 
these guidelines. 
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5.0 SUMMARY 

This document represents a series of practical guidelines.  It allows an analyst to: 

1. Model random parameter variables in the context of a given probability 
distribution. 

2. Allows the determination of the ‘best fit’ probability distribution to a given 
series of observations or test data by accepted analytical means. 

3. Allows a user to determine quantitative failure probabilities on the basis of 
given observations and/or test data. 

4. Provides a considerable lead in to quantitative risk analysis; it does not 
provide an output of risk given that it does not consider quantitative 
analyses of the consequences of a given event.  This information is usually 
already available in either the Safety Case or COMAH report; due reference 
for the quantitative consequence analysis should therefore be obtained by 
referencing the aforementioned (mandatory) documents for calculating risk. 

The treatments detailed in Section 3 and Section 4 of this document are very 
powerful; usage in many practical applications is usually very limited, but in certain 
applications may prove highly beneficial.  It must be borne in mind however, that 
data input requirements are considerably more onerous than semi-quantitative or 
qualitative approaches; the analytical techniques can be no less onerous either (as 
is evidenced in certain of the narrative above), however a large part of this is 
covered in the detail above where the example calculations show how the formulae 
may be solved in practice. 

5.1 Quantitative versus Deterministic Methods 

The deterministic approach (i.e. semi-quantitative or qualitative methods) has the 
distinct advantage of simplicity and the capability of being applied; this approach 
therefore lends itself to ease of application.  The disadvantages of the 
deterministic approach may often, but not entirely be linked to inaccuracies in the 
input data, but notably it is the inability to deal with uncertainties in the input 
data that is the primary weakness.  This therefore may lead to an underestimation 
of the likelihood of failure or overestimating the true ‘risk’ associated with a given 
item of equipment; in other words, the outputs from deterministic assessments can 
be rather uncertain.  In certain circumstances more conservative approaches may 
be employed which make use of more extreme values of the basic input variables 
and this may make the output assessments of risk overly conservative. 

The primary advantage of probabilistic assessment is that it facilitates 
quantification of failure probability on the basis of uncertain data.  The 
probabilistic approach overcomes the seemingly arbitrariness of selecting 
contingencies in the deterministic method and causes attention to be focused on 
the degree of ‘risk’ associated with the operation of a given equipment item.  The 
probabilistic approach reduces the weakness in the deterministic method 
concerning the assumptions made with regard to the input variables, but this does 
not necessarily remove the possibility that important parameters are omitted, or 
perhaps even misjudged.  Nevertheless, the use of probabilistic methods should 
allow better management decisions to be made based on evaluation of the primary 
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threats to a given piece of equipment.  But there are disadvantages in that it is 
intensive, time consuming and can be very complex.  In addition, the inherent 
strength of probabilistic methods is often compromised in two areas which can limit 
application.  The first of these is the data available to support the calculation of 
‘risks’ and the calculation methods themselves.  When performing a probabilistic 
assessment certain assumptions regarding the input data may have to be made; 
using engineering judgement often provides reasonable results, which can be 
improved upon in the future.  In certain instances however, the lack of available 
data may actually preclude the use of probabilistic assessments.  This problem is 
generally masked in the deterministic approach by the broad assumptions of what 
constitutes a credible threat.  The second area is the choice of the target level of 
‘risk’, which in its simplest form in this case was based on pre-defined target levels 
from the Safety Case or COMAH report.  Clearly, a choice has to be made as to what 
constitutes an ‘acceptable level of risk’ and a strategy of risk management 
developed to ensure that this target level is not over-stepped.  Nevertheless in view 
of such limitations, it may be concluded that a probabilistic assessment approach 
which effectively mirrors equipment operations, provides a superior basis upon 
which to manage risk and would therefore likely maximize both safety and business 
performance. 

 


